skip to main content


Search for: All records

Creators/Authors contains: "Steinberger, T. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Experiments have demonstrated that ion phenomena, such as the lower hybrid resonance, play an important role in helicon source operation. Damping of the slow branch of the bounded whistler wave at the edge of a helicon source (i.e. the Trivelpiece-Gould mode) has been correlated with the creation of energetic electrons, heating of ions at the plasma edge, and anisotropic ion heating. Here we present ion velocity distribution function measurements, electron density and temperature measurements, and magnetic fluctuation measurements on both sides of anm=|1|helical antenna in a helicon source as a function of the driving frequency, magnetic field strength, and magnetic field orientation relative to the antenna helicity. Significant electron and ion heating (up to two times larger) occurs on the side of the antenna consistent with the launch of them=+1mode. The electron and ion heating occurs within one electron skin depth of the plasma edge, where slow wave damping is expected. The source parameters for enhanced particle heating are also consistent with lower hybrid resonance effects, which can only occur for Trivelpiece-Gould wave excitation.

     
    more » « less
  2. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams. 
    more » « less
  3. null (Ed.)